PLASTIC BENDING OF BEAMS

Experiment for the study of plastic theory and limit state design of beams. Mounts on the Structures test frame and connects to the Structures automatic data acquisition unit and software.

KEY FEATURES
- Allows safe and practical experiments into plastic bending of beams
- Realistic and verifiable experiment results
- Optional TecQuipment’s Structures Software package for extra, ‘virtual’ experiments, that simulate and confirm the results from your hardware and allow extended experiments
- Optional STR2000 unit with TecQuipment’s Structures Software package for automatic data acquisition and virtual experiments
- One of many interchangeable experiment modules from TecQuipment’s modern, flexible and cost-effective structures teaching system

LEARNING OUTCOMES
- Relationship between load and deflection for beams loaded to the plastic condition
- Introduction to form factor
- Introduction to limit state design
- Relationship between maximum loading and plastic hinge formation for a simply supported beam, a propped cantilever and a fixed beam

KEY SPECIFICATIONS
- Three fully annealed mild steel specimen beams (8 mm x 8 mm x 860 mm)
- 500 N electronic ring load cell
PLASTIC BENDING OF BEAMS

DESCRIPTION

The experiment hardware fits onto a Structures Test Frame (STR1, available separately). Students fix a specimen beam in clamps at both ends of a backboard. The clamps can either clamp the beam (encastré fixing), or hold it on a knife-edge. The students then load the beam using a screw mechanism and electronic load cell.

The load cell connects to a Digital Force Display (STR1a, available separately) which displays the load as the beam deforms. A long-travel digital deflection indicator on the backboard measures specimen deformation. To compensate for the specimen shortening as it deforms, one of the clamps moves along the backboard, relative to the deformation.

Students continue to apply a load until the specimen beam is in the fully plastic condition, that is, the beam has undergone plastic collapse. They then compare the beam behaviour with theoretical predictions based on traditional yield stress theory.

The lecturer guide provides details of the equipment including sample experiment results. The student guide describes how to use the equipment and gives experiment procedures.

For extra ‘virtual’ experiments, TecQuipment can supply the optional TecQuipment Structures Software (STRS), for use on a suitable computer. The virtual experiments simulate the tests you can perform with the hardware. They also extend the choice of tests beyond that available using only the hardware, for example: higher loads, uniform loads or different test specimens. This extends the student’s learning experience.

For automatic data acquisition of your experiment results, TecQuipment can supply the optional Automatic Data Acquisition Unit (STR2000). Supplied as standard with the STR2000 is TecQuipment’s Structures Software that displays and logs your experiment results and gives the extra virtual experiments.

ESSENTIAL BASE UNIT

• Structures Test Frame (STR1)

ESSENTIAL ANCILLARIES

• Digital Force Display (STR1a)

RECOMMENDED ANCILLARIES

• Specimen Beams Pack (STR15A)

• Automatic Data Acquisition Unit (STR2000) for automatic data acquisition and virtual experiments

STANDARD FEATURES

• Supplied with Lecturer Guide and Student Guide

• Five-year warranty

• Made in accordance with the latest European Union directives

• ISO9001 certified manufacturer
PLASTIC BENDING OF BEAMS

OPERATING CONDITIONS

OPERATING ENVIRONMENT:
Laboratory

STORAGE TEMPERATURE RANGE:
-25°C to +55°C (when packed for transport)

OPERATING TEMPERATURE RANGE:
+5°C to +40°C

OPERATING RELATIVE HUMIDITY RANGE:
80% at temperatures < 31°C decreasing linearly to 50% at 40°C

DETAILED SPECIFICATIONS

TecQuipment is committed to a programme of continuous improvement; hence we reserve the right to alter the design and product specification without prior notice.

NETT DIMENSIONS AND WEIGHT:
880 mm x 190 mm x 70 mm and 9.5 kg

PACKED DIMENSIONS AND WEIGHT:
Approximately 0.12 m³ and 11.5 kg

SPECIMEN BEAMS:
Three (8 mm x 8 mm x 860 mm)

SPECIMEN BEAM MATERIAL:
Fully annealed mild steel

LOAD APPLICATION:
500 N electronic ring load cell

ACCESSORIES:
Vernier, rule, lead to connect to a Digital Force Display (STR1a)