TD1002B
RADIAL HEAT CONDUCTION EXPERIMENT

Introduces students to the principles of radial heat conduction and thermal conductivity

• One of four optional experiments for the Heat Transfer Experiments Base Unit (TD1002)
• Fits quickly and easily onto the base of the Heat Transfer Experiments Base Unit and water connections have self-sealing quick connectors – needs no tools
• Shows the principles of radial heat conduction radially around a disc of uniform diameter
• Clear schematic printed on the baseplate aids student understanding
• Allows the thermal conductivity of the disc material to be measured
• Safe, low-voltage heater with over-temperature cut-out
TD1002B
RADIAL HEAT CONDUCTION EXPERIMENT

DESCRIPTION
This experiment has a solid brass disc with an electric heater (heat source) at its centre and a circular cross-section cooling tube (heat sink) around its circumference. It mounts on a base plate with a clear schematic of the experiment layout.

The electric heater and thermocouples connect to sockets on the Heat Transfer Experiments Base Unit, which also supplies the cold water feed and drain for the heat sink.

Students turn on the cooling water flow and adjust the heater power until the experiment reaches equilibrium. At equally spaced radii on the disc, seven thermocouples measure the temperature as the heat conducts radially outwards from the heater. Insulation around the disc reduces heat loss by convection and radiation, so that the results should match the theory for simple radial conduction only.

STANDARD FEATURES
- Five-year warranty
- Made in accordance with the latest European Union directives

LEARNING OUTCOMES
- Demonstration and calculations of radial heat conduction.
- Calculation of the thermal conductivity (k value).

ESSENTIAL BASE UNIT
- Heat Transfer Experiments Base Unit (TD1002)

OPERATING CONDITIONS
OPERATING ENVIRONMENT:
Laboratory
STORAGE TEMPERATURE RANGE:
-25°C to +55°C (when packed for transport)
OPERATING TEMPERATURE RANGE:
+5°C to +40°C
OPERATING RELATIVE HUMIDITY RANGE:
80% at temperatures < 31°C decreasing linearly to 50% at 40°C

SOUND LEVELS
Less than 70 dB(A)

TECHNICAL DETAILS
NETT DIMENSIONS AND WEIGHTS:
Radial Heat Conduction Experiment (TD1002b):
390 mm x 280 mm x 170 mm high and 5.3 kg